International Journal of Advanced Multidisciplinary Scientific Research(IJAMSR) ISSN:2581-4281 Volume 2, Issue 9, September, 2019

IJAMSR 2 (9) www.ijamsr.comCrossRef: https://doi.org/10.31426/ijamsr.2019.2.9.1914

I J A M S R

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Synthèse Et Caractérisation D'un Composite Verre De Phosphate – Argile Obtenu A Partir D'un Mélange Oxydes - Argiles

Soumia Kamariz^{*1}, Nour-el-hayet Kamel¹, Abdelmoumene Djeridi², Dalila Moudir¹, Fairouz Aouchiche¹, Yasmina Mouheb¹

 ¹ Centre de Recherche Nucléaire d'Alger, Division de sûreté, environnement et déchets radioactifs, 2. Bd Frantz Fanon, B.P:399, Alger-RP, Alger, Algérie.
 ² Université M'Hamed Bougara, URMPE, Avenue de l'indépendance, Boumerdès, Algérie.

Email: kamarizsoumia@live.fr,

ABSTRACT

Keywords: verre phosphate de fer, argile, confinement, déchets radioactifs, Cs, FTIR, XRD, RAMAN. Le confinement des solutions de déchets radioactifs complexes est un problème. Le but de cette étude est de synthétiser un verre phosphate dopé avec une solution radioactive complexe associée à un matériau d'argile. Le verre phosphate dopé avec une solution de déchets radioactifs est mélangé avec 20% d'argile Ce composite est synthétisé par calcination à 850°C avec un pas de chauffage lent, pour éviter la fusion du verre pendant la synthèse. Le composite synthétisé est caractérisé par analyses par diffraction des rayons X, et spectroscopie infra-rouge à transformée de Fourier et Raman.

Le matériau final est un composite comprenant un verre phosphate et quatre phases cristallines, à savoir: Na Fe (P₂O₇), AlCs₃P₂, AlPO₄, et (Si_{0.98}Ti_{0.02}) O2. Le césium apparait confiné dans la phase phosphate AlCs₃P₂. L'analyse FTIR montre la présence des bandes d'absorption des unitesPO₄³⁻et P₂O₇⁴⁻ (à 1120, 1097 et 1018 cm⁻¹), et la vibration de P-O-P associée au verre (900 et 945 cm⁻¹). La déformation des unitesP₂O₇⁴⁻et PO₄³⁻en bandes fines de 800 à 400cm⁻¹.

Citation:SoumiaKamariz, Nour-el-hayetKamel, AbdelmoumeneDjeridi, DalilaMoudir, FairouzAouchiche, YasminaMouheb(2019). Synthèse Et Caractérisation D'un Composite Verre De Phosphate – ArgileObtenu A Partir D'un Mélange Oxydes–Argiles. International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281, 2 (9),September,2019, # Art.1914, pp 50 -59

IJAMSR 2(9)

www.ijamsr.com

September 2019

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Introduction

Le verre phosphate présente des propriétés physico-chimiques intéressantes dans différents domaines scientifiques: électronique, semiconducteurs, confinement des déchets radioactifs, etc. [1, 2]. Il présente un bas point de fusion (<1000°C), et peut être facilement synthétisé par les procédés de synthèse conventionnels. A l'état fondu, le verre phosphate est peu visqueux, rendant son raffinement facile [3, 4].

Le domaine de vitrification du verre phosphate est très étendu, le rendant capable de contenir dans sa structure un très grand nombre d'oxydes. Ainsi, sur de larges domaines de composition vitreuse, l'étude des relations structure – propriétés en est facilitée [3].

Ainsi les verres phosphates constituent des matériaux de choix pour le développement de nouvelles matrices [3].

Dans cette étude, nous avons synthétisé un verre phosphate chargé de déchets radioactifs. Dans le but d'améliorer sa durabilité chimique et ses propriétés réfractaires, 20 % d'argile ont été ajoutés dans sa composition chimique. Le matériau est obtenu par calcination du mélange réactionnel à 850°C. Il est caractérisé par analyse par diffraction des rayons X et par spectroscopies infrarouge à transformée de Fourier et Raman.

Matériels et Méthodes

chimique La composition du matériau synthétisé est donnée au tableau 1. Les réactifs commerciaux suivants sont utilisés :Al₂O₃ (Fluka), B_2O_3 (Labosi, pureté $\geq 99\%$), CaO (Merck, pureté \geq 97%), CeO₂ (Aldrich, pureté 99.999%), CrO₃ (Merck, pureté \geq 99%), Fe₂O₃ (Fluka, pureté \geq 99%), K₂CO₃ (Merck, pureté \geq 99%), MgO (Fluka, pureté \geq 97%), MnO₂ (Merck), MoO₃ (Merck, pureté \geq 99.5%), Nd₂O₃ (Fluka, pureté > 99.9%), P_2O_5 (Merck, pureté \geq 98%), Pr₆O₁₁ (Cerac, pureté \geq 99%), TiO₂ (Merck, pureté \geq 99%), Y₂O₃ (Merck, pureté \geq 99%), ZrO₂ (Aldrich, pureté 99%), ZnO (Fluka), SrO (Fluka), SnO₂ (Fluka), Rb₂O (Fluka, $La(NO_3)_3.6H_2O$ pureté (Fluka). 99.99%), $Ni(NO_3)_2.6H_2O$ (Fluka, pureté 99.6%), Gd₂O₃ (Fluka), Cs₂O (Fluka), CoO (Fluka), CdO (Fluka), CaF₂ (Fluka), BaNO₃ (Fluka, pureté 99.6%), U₃O₈ (Mallikrodt), As₂O₃ (Aldrich) et Ag₂O (Aldrich).

IJAMSR 2(9)

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Le verre phosphate (PG) est principalement constitué des oxydes Fe₂O₃et P₂O₅oxides, avec un rapport Fe₂O₃ / P₂O₅de 0.731. Une solution typique de déchets radioactifs, inspirée de déchets de réacteurs actuels est utilisée dans la proportion 20:80. L'argile a été fournie par l'entreprise algérienne Soalka des argiles. Elle est constituée d'un kaolin naturel du gisement d'El-Milia(Algeria).

Le mélange de poudre est homogénéisé 5 h dans un homogénéiseur adapté de marque Retsch. Il est ensuite compacté en pellettes cylindriques à une pression moyenne de 9 t au moyen d'une presse uniaxiale Sodemi RD. Les pellettes sont calcinées à 850 °C pendant 2h30 dans un four BLF 1800 Carbolite avec un pas de 5°C/min. elles sont refroidies naturellement à la température ambiante.

La densité d'Archimedes est mesurée à l'aide d'un pycnomètre de 10 mL en utilisant de l'eau comme liquide mouillant.

L'identification de phase est réalisée à l'aide d'un diffractomètre X'Pert Pro Pan Analytical équipé d'une anticathode en cuivre, en utilisant la longueur d'onde K α 1 = 1.5418 Å, une tension de 40 kV, et une intensité de courant de 40 mA. L'acquisition est effectuée avec 2θ allant de 3 à 80 °, une vitesse de scan de 0.0701 °/s. L'identification de phase est réalisée à l'aide du logiciel Philips X'Pert High Score Plus version 4.1 software [5].

La spectroscopie infrarouge à Transformée de Fourier (FTIR) est réalisée au Centre de Recherche de la Technologie des Semiconducteurs pour l'Energie (CRTSE), en utilisant un spectromètre Thermonicolet670 Nexus, muni du logiciel OMNIC version 5.12 [6].

L'analyse Raman est réalisée à l'aide d'un équipement LabRAM HR Evolution, équipé d'un détecteur CDD. La source d'excitation consiste en un laser rouge visible à 633 nm. Les mesures sont effectuées à la température ambiante de 2000 à 100cm⁻¹ avec un objectif confocal x40 µm. La zone d'acquisition est divisée en trois fenêtres successives, chacune d'entre elles comprenant 05 acquisitions avec une accumulation de 05 s. les échantillons sont des lames minces de 2 mm d'épaisseur posées sur un porte échantillon transparent.

International Journal of Advanced Multidisciplinary Scientific Research(IJAMSR) ISSN:2581-4281 Volume 2, Issue 9, September, 2019

IJAMSR 2 (9) www.ijamsr.comCrossRef: https://doi.org/10.31426/ijamsr.2019.2.9.1914

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Résultats et Discussion

1. Densité

La densité d'Archimède du matériau composite obtenu est de 2.797. Elle est légèrement inférieure à celle du verre chargé de déchets (3.178).

Nos valeurs sont comparables à celles d'O.K. Deutschbein et al. [7] qui trouvent une densité de 2.45 à 3.78 pour un verre phosphate bivalent de formule générale : $P_2O_5 + R$. YO, où Y est Be, Mg, Ca, Zn, Sr, Cd et Ba, dopé en néodyme et synthétisé à la température de 1100°C. Ces auteurs trouvent que la densité du verre phosphate de même composition augmente avec la teneur en Nd, ce qui est le cas du verre de la présente étude lorsqu'on le charge de DR et donc de Nd.

2. Identification des phases cristallines par analyse DRX

Le diffractogramme du matériau obtenu est donné à la Figure 1.11 montre un composite constitué de plusieurs phases cristallines dispersées dans du verre. Les principales phases identifiées ont un squelette de type : NaFe3(P2O7), AlCs3P2 et (tableau 2).Le césium apparait être confiné dans le phosphate.

Figure 1 - Spectre DRX du matériau synthétisé.

3. Analyse par spectroscopie infrarouge à transformée de Fourier

L'analyse par spectroscopie infrarouge à transformée de Fourier (FTIR) est réalisée par un équipement Thermo Nicolet NEXUS 670 équipé du logiciel OMNIC version 5.12 [6].Les échantillons sont pastillés sur film mince de KBr (Merck). L'analyse est réalisée dans le domaine spectral de 2000 à 600cm⁻¹. Le spectre FTIR du matériau synthétisé est donné à la figure 2.

IJAMSR 2(9)

IJAMSR 2 (9) www.ijamsr.comCrossRef: https://doi.org/10.31426/ijamsr.2019.2.9.1914

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Le spectre montre la vibration d'absorption de la liaison B-O-B du verre à 1622 cm⁻¹[8], celle de B-O de BO₃ à 1375 et 1560 cm⁻¹ et celle des différents groupes de borate à 1465 cm⁻¹[8].

Les bandes d'absorption observées à 1120, 1097 et 1018 cm⁻¹ peuvent être assignées aux vibrations symétriques et asymétriques des liaisons P-O des unités P_2O7_4 et PO_4^{3-} [9].

Les vibrations P-O-P des groupements P_2O_7 indiquent la présence du verre phosphate. Elles sont localisées à 900 et 945cm⁻¹ [9].

La déformation des unités $P_2O_7^{4-}$ et PO_4^{3-} se caractérise par des bandes faibles de 800 à 400 cm⁻¹ [9]. La bande observée à 1255 cm⁻¹montre la présence des liaisons P-O de PO₂ [10].

La bande caractéristique à 1074 cm⁻¹ indique la présence des liaisons Fe-O-P dans Na-Fe-P₂O₇ ; cette dernière phase a été mise en évidence par analyse par diffraction des rayons X (DRX) [11].

La bande d'absorption des liaisons P-O et Al-O apparaissent à 841 cm⁻¹[12], et celle de Fe-O à 804 cm⁻¹[13].

Les vibrations des liaisons B-O dans B-O-Si et de Si-O du verre apparaissent à 970 et 997cm⁻¹, respectivement [14, 15].

La bande autour de 960 cm⁻¹des silicates pures est absente. Cependant, on observe la bande des liaisons Si-O-Ti associée aux oxydes mixtes SiO₂ -TiO₂ à 960 cm⁻¹[16].

Les bandes associées à la liaison Si-O-Si sont à 816 et 465 cm⁻¹. Cette dernière diminue avec l'addition de titane (venant de l'argile) dans la structure, montrant la transformation de cette liaison en Si-O-Ti. La bande d'absorption de Ti-O-Ti à 650 cm⁻¹suggère la formation probable d'oxyde de titane [16].

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

4. Caractérisation du matériau synthétisé par spectroscopie Raman

Le spectre Raman du matériau composite synthétisé dans la région 2000-50 cm⁻¹ est donné à la figure 3. Il donne des informations qualitatives et quantitatives sur la structure du réseau vitreux.

Il est complémentaire de l'analyse FTIR, puisque certaines vibrations sont plus actives en mode Raman comparé à celui FTIR. Le tableau 3 résume les principales bandes des vibrations Raman identifiées dans le matériau.

Figure 3 - Spectre Raman du matériau composite verre-argile synthétisé.

La géométrie de la structure phosphate libre est représentée à la Figure 4.L'unité structurale phosphate la plus simple est Q₀qui représente un tétraèdre $[PO_4]^{3-}$ isolé. Sa structure optimisée est donnée à la figure 4.a. Elle montre que le cation phosphore P⁵⁺est placé au milieu du tétraèdre parfait entouré de $-O^{2-}$ [Pawel Stoch]. Dans ce cas les quatre oxygènes autour ne sont pas pontants (NBO : no-bridgedoxygens). Ils donnent les bandes d'absorption à 1014 et 1060 cm⁻¹.

L'unité structurale de dimension la plus élevée est Q¹qui est une terminaison de chaîne. La chaine la plus courte est une combinaison des deux unités (figure 4.b). Ces deux tétraèdres $[PO_4]$ sont liés par un atome commun d'oxygène, qui est pontant (BO : bridgedoxygen), et forment l'unité $[P_2O_7]^{4-}$ [17].

Figure 4 - La géométrie libre de la structure phosphate 4.a. $[PO_4]^{3-}$ isolés, 4.b. Unité $[P_2O_7]^{4-}$ [17].

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Le pic à 220 cm⁻¹est attribué au mode de flexion de P-O-P des verres phosphate. La bande d'absorption à 292 cm⁻¹montre le mouvement librationnel des unités Q^0 formées par les ions fer modificateurs. Dans la littérature, ces deux bandes sont signalées à 220 et 306 cm⁻¹, respectivement [18].

La bande à 412 cm⁻¹est attribuée à la vibration de flexion symétrique de P-O des unités Q^0 . Elle est signalée à 420cm⁻¹dans la littérature [18].

La vibration caractéristique de Si-O-Si à 499 cm⁻¹, est probablement due à la phase cristalline de titanate (Si_{0.98} $T_{i0.02}$) O2identifiée par analyse DRX [19].

Le pic faible à 611 cm⁻¹est attribué à la vibration de flexion asymétrique des liaisons P-O des unités Q¹ (VI Fe) [20].

L'étirement de la liaison P-O dans les tétraèdres Q_0 apparait à 1014 cm⁻¹. Elle est reportée dans la littérature à 1020cm⁻¹[21].

La vibration d'étirement asymétrique de la liaison P-O des unités Q1 de $[P_2O_7]^{-4}$ impliquant un nombre plus petit de groupes pyrophosphates du réseau vitreux, est observé à 1095 cm⁻¹[18] ; et celle de l'étirement des P-O de $[PO_4]^{3-}$ est identifiée à 1060cm⁻¹[21].

Un pic large à 1318 cm⁻¹, pouvant s'étaler de 1250 à 1500 cm⁻¹, est dû à l'étirement asymétrique des liaisons B-O des unités trigonales BO₃avec des oxygènes non-pontants (NBO) [19].

On en conclut que le verre phosphate est à dominante d'unités Q_0 .

Conclusion:

Dans cette étude, nous avons synthétisé un composite verre phosphate-argile, à partir d'oxydes précurseurs ; le rapport Fe_2O_3/P_2O_5 est de 0.731. Le taux de chargement du matériau en déchets est de 10% en masse et la teneur en argile dans le matériau est de 20%. Le matériau est obtenu par calcination à 850°C pendant 2 h30 du mélange compacté en pastilles.

IJAMSR 2(9)

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

L'analyse DRX du matériau final a montré des phases phosphate et silicates de squelette : (NaFe (P₂O₇,AlPO₄)(Si_{0.98}Ti_{0.02})O₂. Le césium apparait confiné dans la phase phosphate AlCs₃P₂.Nous pouvons donc conclure que le matériau contient des phases réfractaires capables de confiner les éléments radioactifs.

La caractérisation du matériau par spectroscopie FTIR a montré les vibrations des unités $P_2O_7^{4-}$ (associée à la phase amorphe du verre phosphate) et PO_4^{3-} , de Na-Fe-P₂O₇, et de Si-O-Ti, Si-O-Si associée à (Si_{0.98}Ti_{0.02}) O2. L'analyse Raman du matériau vient confirme les résultats obtenus par spectroscopie FTIR. Elle montre que la phase vitreuse est un verre de phosphate à unités majoritaires Q₀.

References:

- [1] Li, S., Liu, H., Wu, F., Chang, Z., &Yue, Y. (2016). Effects of alkaline-earth metal oxides on structure and properties of iron phosphate glasses. Journal of Non-Crystalline Solids, 434, 108-114.
- [2] Money, B. K. etHariharan, K. Lithium ion conduction in lithium metaphosphate based systems. AppliedPhysics A, 2007. 88. 4: p. 647-652.

- [3] Videau, J. J., & Le Flem, G. Les verres phosphates: de la spécificité de l'atome de phosphore à la formation, la structure et la durabilité chimique de phosphates vitreux, Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, Université de Bordeaux, 2009.
- [4] Sales, B. C. etBoatner, L. A. Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste. Science, 1984,226: 4670, p. 45-48.
- [5] JCPDS, PCPDF win diffraction data CD, Ed. Int. Center Diffraction Data, Newtown Square, 2004.
- [6] Omnic software version 5.12, Nicolet instrument, 1992-2001.
- [7] Kumar, A. Rupesh, et al. Gamma ray induced changes on vibrational spectroscopic properties of strontium alumino-borosilicate glasses.Vibrational Spectroscopy, 2013.69 : 49-56.
- [8] A. Rupesh Kumar Rao TGVM, K. Neeraja, Rami Reddy, N. Veeraiah, Gamma ray induced exchangeisvibrationalspectroscopypropertiesof strontium alumino-borosilicate glasses, VibrationalSpectroscopy, 2013. 69 : p. 49- 56.
- [9] I., Maarouf, A., Ouilmekki, J., et al Toyir. A Combined Crystal Structural, IR, Raman and 31 P NMR Spectroscopy of a new iron phosphate FePb2 (P2O7) (PO 4), 2017.
- [10]Belfaquir., Mr. Guedira., SMD., T. journal Springer Reh, vibrational and electrical study Glasses isolated phosphate in the system Bi2O3
 B2O3 - P2O5, Laboratory for Materials Electrochemistry and Environment, Morocco, 2008.

IJAMSR 2(9)

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

- [11]Mogus-Milankovic, Andrea, et al, Structural study of iron phosphate glasses, 1997:p. 74.
- [12]Radev, L., Samuneva, B., Mihailova, I., et al. Sol-gel synthesis and structure of cordierite/tialite glass-ceramics. Processing and Application of Ceramics, 2009. 3, 3, p: 125-130.
- [13]Marx, N., Synthesis and characterization of new phosphates used as positive electrode materials for lithium batteries, University of Science and Technology -Bordeaux I, 2010, p.177.
- [14]Gautam, C., Yadav, A. K., & Singh, A. K. A review on infrared spectroscopy of borate glasses with effects of different additives. ISRN ceramics, 2012.
- [15]Mcmillan., PF, Grzechnik.A., Chotalla, H., Structural characterization of SiO2 and SiO2-CsAlO2-RbAlO2 Glasses, Journal of Non-Crystalline Solids 226 1998. p.239-248.
- [16]Ren, J., Li, Z., Liu, S., Xing, Y., &Xie, K. Silicatitania mixed oxides: Si-O-Ti connectivity, coordination of titanium, and surface acidic properties. Catalysis Letters, 124,3-4: p.185-194.
- [17]Stoch, P., Stoch, A., Ciecinska, M., Krakowiak, I., Sitarz, M. Structure of phosphate and ironphosphate glasses by DFT calculations and FTIR/Raman spectroscopy. Journal of Non-Crystalline Solids, 2016. 450: p. 48-60.
- [18]Chakraborty, S., & Arora, A. K. Temperature evolution of Raman spectrum of iron phosphate glass. Vibrational Spectroscopy, 2012. 61:p.99-104.

- [19]Yadav, A. K., & Singh, P. (2015). A review of the structures of oxide glasses by Raman spectroscopy. Rsc Advances, 5, 83 :p. 67583-67609.
- [20]RupeshKumer, A., et al, Gamma ray induced exchange isvibrationalspectroscopiproprieties of strontium alumino-borosilicate glasses, VibrationalSpectroscopy, 2013.69 : p.49-56.
- [21]Ray L. Fros, Matt L. WeierRamanspectroscopy of phosphate mineral group of the variscite Article en Journal of Raman Spectroscopy ,2004. 35:p. 12 · Reads with65 DOI: 10.1002 / jrs.1251.

IJAMSR 2(9)

International Journal of Advanced Multidisciplinary Scientific Research(IJAMSR) ISSN:2581-4281 Volume 2, Issue 9, September, 2019

IJAMSR 2 (9) www.ijamsr.comCrossRef: https://doi.org/10.31426/ijamsr.2019.2.9.1914

International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Tableau 1- Composition chimique du verre phosphate pur (PG) et chargé de déchets radioactifs (PG+RW)

Oxyde	VP (m %)	DR (m %)	VP+DR (m %)
Ag ₂ O		0.256	0.051
Al ₂ O ₃		2.562	0.512
As ₂ O ₃	2.000	0.000	1.600
B_2O_3	8.000	0.000	6.400
BaO		1.367	0.273
CaF ₂		0.854	0.171
CaO		3.246	0.649
CdO		0.085	0.017
CeO ₂		49.539	9.908
CoO		0.342	0.068
Cr ₂ O ₃		0.512	0.103
Cs ₂ O		2.904	0.581
Fe ₂ O ₃	25.000	11.958	22.392
Gd_2O_3		0.342	0.068
K ₂ O		0.512	0.102
La ₂ O ₃		0.683	0.137
MgO		6.833	1.367
MnO ₂		0.051	0.010
MoO ₃		5.125	1.025
Na ₂ O	8.000	0.000	6.400
Nd_2O_3		3.075	0.615
NiO		0.854	0.171
P_2O_5	57.000	0.000	45.600
Pr ₆ O ₁₁		0.854	0.171
Rb ₂ O		0.171	0.034
SnO ₂		0.137	0.027
SrO		0.342	0.068
TiO ₂		0.068	0.014
U_3O_8		0.495	0.099
Y_2O_3		3.758	0.752
ZnO		0.854	0.171
ZrO ₂		2.221	0.444
Total (m.%)	100.000	100.000	100.000

Table 2- Principales phases cristallines identifiéesdans le matériau par analyse (DRX)

Phase	Fiche JCPDS [5]	Analyse semi- quantitative(%)
NaFe ₃ (P ₂ O ₇)	01-080-	46
	1475	
AlCs ₃ P ₂	01-084-	38
	2242	
Si _{0.98} Ti _{0.02} O ₂	01-089-	17
	8099	

Tableau 3- Principales vibrations FTIR et Raman du matériau composite synthétisé.

Vibration	FTIR (cm ⁻¹)	Raman (cm ⁻¹)	Valeurs de la littérature (cm ⁻¹)
Mode de flexion P-O-P		227	220 [18]
Mouvement librationnel des unités Q ₀ formés par les ions fer modificateurs		292	306 [18]
Vibration de flexion symétrique de la liaison P-O des Q ⁰ .	400-800	412	410-500[20] 420[18]
Si-O-Si dans (Si _{0.98} Ti _{0.02})O ₂	816	499	480[19]
Vivration de flexion asymétrique des liaisons P.O. dons O ^{1- (VIFe)}	-	611	617[20]
r-O dans Q stretching vibrations of P-O bonds in Q ⁰ tetrahedra of [PO4] ⁻³	-	1014	1020[21]
Vibration d'élongation asymétrique des liaisons P-O dans les tétrahèdresQ ¹ des unités	1120 1097 1018	1095	1100[20]
[P ₂ O ₇] Vibration d'élongation de P-O des unités [PO ₄] ⁻³ .	-	1060	1060[21]
Relaxation de l'étirement asymétrique de B-O des	1375		1300-
unités trigonales BO ₃ avec les oxygènes NBO.	1560	1318	1600[19]
Mode de flexion P-O-P	-	227	220 [18]
Mouvement librationnel des unités Q ₀ formés par les ions fer modificateurs.	-	292	306 [18]

IJAMSR 2(9)